
Advances in Computer Science and its Applications (ISSN 2166-2924) 131
Vol. 1, No. 2, June 2012
Copyright © World Science Publisher, United States
www.worldsciencepublisher.org

131

A MODEL FOR IMPROVING GUILT PROBABILITIES TO
IDENTIFY DATA LEAKAGES

1A. Mounika, 2M. Satwik, 3G. Rajesh Chandra
123Dept of ECM, KLCE, A.P, INDIA

Email: 1b.mounikaaluri@gmail.com, 2motamarrisatwik@gmail.com, 3grajeshchandra@gmail.com

ABSTRACT: Sometimes sensitive data may be distributes by a data distributor to a set of trusted agents (third parties), but some of
the distributed data we may find in an unauthorized website or systems. So the distributor must assess the probability of data leakage
from its trusted agents. So in this project we proposed a model for assessing the guilt probabilities of agents, in a way that improves
the chances of identifying a data leakage. We also propose algorithms for distributing objects to agents. Finally we also consider the
option of adding fake data objects to the distributed data set. Such objects do not correspond to the real entries but appear realistic to
the trusted agents. These fake objects used like watermarking for the entire dataset. These schemes do not make any alternations of
the released data.

Keywords: Perturbation; data leakage; fake records; leakage model.

1. INTRODUCTION

In the course of doing business, sometimes sensitive
data must be handed over to supposedly trusted third
parties. For example, a hospital may give patient records
to researchers who will devise new treatments. Similarly,
a company may have partnerships with other companies
that require sharing customer data. Another enterprise
may outsource its data processing, so data must be given
to various other companies. We call the owner of the data
the distributor and the supposedly trusted third parties
the agents. Our goal is to detect when the distributor’s
sensitive data have been leaked by agents, and if possible
to identify the agent that leaked the data [1].

We consider applications where the original sensitive
data cannot be perturbed. Perturbation is a very useful
technique where the data are modified and made “less
sensitive”before being handed to agents. For example,
one can add random noise to certain attributes, or one can
replace exact values by ranges [2]. However, in some
cases, it is important not to alter the original distributor’s
data. For example, if an outsourcer is doing our payroll,
he must have the exact salary and customer bank account
numbers. If medical researchers will be treating patients
(as opposed to simply computing statistics), they may
need accurate data for the patients.

Traditionally, leakage detection is handled by water-
marking, e.g., a unique code is embedded in each
distributed copy. If that copy is later discovered in the
hands of an unauthorized party, the leaker can be
identified. Watermarks can be very useful in some cases,
but again, involve some modification of the original data.
Furthermore, watermarks can sometimes be destroyed if
the data recipient is malicious. In this paper, we study
unobtrusive techniques for detecting leakage of a set of
objects or records. Specifically, we study the following
scenario: After giving a set of objects to agents, the
distributor discovers some of those same objects in an
unauthorized place. (For example, the data may be found
on a website, or may be obtained through a legal

discovery process.) At this point, the distributor can
assess the likelihood that the leaked data came from one
or more agents, as opposed to having been
independently gathered by other means. Using an
analogy with cookies stolen from a cookie jar, if we
catch Freddie with a single cookie, he can argue that a
friend gave him the cookie. But if we catch Freddie with
five cookies, it will be much harder for him to argue that
his hands were not in the cookie jar. If the distributor sees
“enough evidence”that an agent leaked data, he may stop
doing business with him, or may initiate legal
proceedings.

In this paper, we develop a model for assessing the
“guilt”of agents. Finally, we also consider the option of
adding “fake”objects to the distributed set. Such objects
do not correspond to real entities but appear realistic to
the agents. In a sense, the fake objects act as a type of
watermark for the entire set, without modifying any
individual members. If it turns out that an agent was
given one or more fake objects that were leaked, then the
distributor can be more confident that agent was guilty.

The rest of the paper is organized as follows. Section2
describes about various software used for the
implementation of the project. Proposed project work is
depicted in Section3. Section 4 gives conclusion to the
paper. Future Scope is pointed out in Section 5.

2. SOFTWARES USED
2.1 Front-End (Java)

Java is a programming language originally developed
by James Gosling at Sun Microsystems (which has since
merged into Oracle Corporation) and released in 1995 as
a core component of Sun Microsystems' Java platform.
The language derives much of its syntax from C and C++
but has a simpler object model and fewer low-level
facilities. Java applications are typically compiled to byte
code (class file) that can run on any Java Virtual Machine
(JVM) regardless of computer architecture. Java is a
general-purpose, concurrent, class-based, object-oriented



A. Mounika, et al., ACSA, Vol. 1, No. 2, pp. 131-135, June 2012 132

132

language that is specifically designed to have as few
implementation dependencies as possible. It is intended
to let application developers "write once, run anywhere"
(WORA), meaning that code that runs on one platform
does not need to be recompiled to run on another. Java is
currently one of the most popular programming
languages in use, particularly for client-server web
applications, with a reported 10 million users.

The original and reference implementation Java
compilers, virtual machines, and class libraries were
developed by Sun from 1995. As of May 2007, in
compliance with the specifications of the Java
Community Process, Sun relicensed most of its Java
technologies under the GNU General Public License.
Others have also developed alternative implementations
of these Sun technologies, such as the GNU Compiler for
Java and GNU Class path. One characteristic of Java is
portability, which means that computer programs written
in the Java language must run similarly on any
hardware/operating-system platform. This is achieved by
compiling the Java language code to an intermediate
representation called Java byte code, instead of directly to
platform-specific machine code. Java byte code
instructions are analogous to machine code, but are
intended to be interpreted by a virtual machine (VM)
written specifically for the host hardware. End-users
commonly use a Java Runtime Environment (JRE)
installed on their own machine for standalone Java
applications, or in a Web browser for Java applets.
Standardized libraries provide a generic way to access
host-specific features such as graphics, threading, and
networking.

A major benefit of using byte code is porting.
However, the overhead of interpretation means that
interpreted programs almost always run more slowly than
programs compiled to native executable would. Just-in-
Time (JIT) compilers were introduced from an early stage
that compiles byte codes to machine code during runtime.

2.2 MS Access:

Microsoft Office Access, previously known as
Microsoft Access, is a database management system from
Microsoft that combines the relational Microsoft Jet
Database Engine with a graphical user interface and
software-development tools. It is a member of the
Microsoft Office suite of applications, included in the
Professional and higher editions or sold separately. On
May 12 2010, the current version of Microsoft Access
2010 was released by Microsoft in Office 2010;
Microsoft Office Access 2007 was the prior version.MS
Access stores data in its own format based on the Access
Jet Database Engine. It can also import or link directly to
data stored in other applications and databases.

Software developers and data architects can use
Microsoft Access to develop application software, and
"power users" can use it to build software applications.
Like other Office applications, Access is supported by
Visual Basic for Applications, an object-oriented
programming language that can reference a variety of
objects including DAO (Data Access Objects), ActiveX
Data Objects, and many other ActiveX components.
Visual objects used in forms and reports expose their

methods and properties in the VBA programming
environment, and VBA code modules may declare and
call Windows operating-system functions.

2.3 SQLite:

SQLite implements most of the SQL standard, using a
dynamically and weakly typed SQL syntax that does not
guarantee the domain integrity. In contrast to other
database management systems, SQLite is not a separate
process that is accessed from the client application, but an
integral part of it. SQLite read operations can be
multitasked, though writes can only be performed
sequentially.

SQLite is a popular choice for local/client storage on
web browsers. It has many bindings to programming
languages. It is arguably the most widely deployed
database engine, as it is used today by several widespread
browsers, operating systems, and embedded systems,
among others. SQLite implements most of the SQL-92
standard for SQL but it lacks some features. For example
it has partial support for triggers, and it can't write to
views (however it supports INSTEAD OF triggers that
provide this functionality). While it supports complex
queries, it still has limited ALTER TABLE support, as it
can't modify or delete columns. SQLite has automated
regression testing prior to each release. Over 2 million
tests are run as part of a release's verification. Starting
with the August 10, 2009 release of SQLite 3.6.17,
SQLite releases have 100% branch test coverage, one of
the components of code coverage.

3. RESULT

The project illustrated in this paper is entirely based on
the idea of detecting the agent who leaked the data. Here,
the main objective of this project is to add fake objects to
the originally distributed data in order to find out the guilt
agent. It includes 4 modules: Data Allocation, Fake
object, Optimization, Data distributor.

3.1 Data Allocation

The main focus of my project is the data allocation
problem as how can the distributor “intelligently” give
data to agents in order to improve the chances of
detecting a guilty agent. In this module, administrator has
to login with his id and password. Administrator has all
the agent information, user data inside his database.
Administrator is now able to view the database consisting
of the original data as well as the fake data. Administrator
can also list the agents here. He will be able to add
additional information to the database. Agent’s
information can be added here [3].

3.2. Fake Object:

Fake objects are objects generated by the distributor in
order to increase the chances of detecting agents that leak
data. The distributor may be able to add fake objects to
the distributed data in order to improve his effectiveness



A. Mounika, et al., ACSA, Vol. 1, No. 2, pp. 131-135, June 2012 133

133

in detecting guilty agents. Our use of fake objects is
inspired by the use of “trace”records in mailing lists.

Fig-3.1: Original Database

Fig-3.2: Fake Objects

3.3 Optimization

The Optimization Module is the distributor’s data
allocation to agents has one constraint and one objective.
The distributor’s constraint is to satisfy agents’requests,
by providing them with the number of objects they
request or with all available objects that satisfy their
conditions. His objective is to be able to detect an agent
who leaks any portion of his data.

3.4 Data Distribution

A data distributor has given sensitive data to a set of
supposedly trusted agents. Some of the data is leaked and
found in an unauthorized place. The distributor must
assess the likelihood that the leaked data came from one
or more agents, as opposed to having been independently
gathered by other means [4],[5].

Fig-3.3: Distribution Page

3.5 Screenshots

Fig-3.4: Login Page



A. Mounika, et al., ACSA, Vol. 1, No. 2, pp. 131-135, June 2012 134

134

Fig-3.5: Welcome Page

Fig-3.6: Detection or Checking

Fig-3.7: Found Guilt Agent

4. Conclusion

In a perfect world there would be no need to hand over
sensitive data to agents that may unknowingly or
maliciously leak it. And even if we had to handover
sensitive data, in a perfect world we could watermark
each object so that we could trace its origins with
absolute certainty. However, in many cases we must
indeed work with agents that may not be 100% trusted,
and we may not be certain if a leaked object came from
an agent or from some other source, since certain data
cannot admit watermarks. In spite of these difficulties, we
have shown it is possible to assess the likelihood that an
agent is responsible for a leak, based on the overlap of his
data with the leaked data and the data of other agents, and
based on the probability that objects can be guessed b́y
other means. Our model is relatively simple, but we
believe it captures the essential trade-offs. The algorithms
we have presented implement a variety of data
distribution strategies that can improve the distributor’s
chances of identifying a leaker. We have shown that
distributing objects judiciously can make a significant
difference in identifying guilty agents, especially in cases
where there is large overlap in the data that agents must
receive. It includes the investigation of agent guilt models
that capture leakage scenarios that are not studied in this
paper. For example, what is the appropriate model for
cases where agents can collude and identify fake tuples?
A preliminary discussion of such a model is available in.

5. Future Scope



A. Mounika, et al., ACSA, Vol. 1, No. 2, pp. 131-135, June 2012 135

135

The developer of an application can never be carried
out to the fullest extend in a stipulated time, the main
reason why revisions of the application are always
introduced in course of time. This application being
restricted to one time development will have no revision
done, hence certain areas that can be enhanced is pointed.
The enhanced version of this system can detect the guilty
agent even through the internet.

ACKNOWLEDGEMENT

We thank our H.O.D Dr. Balaji and Principal K.
Rajasekhar Rao for giving us the eminent facilities to
perform our research. We are obliged to whole
Electronics and Computers department, KLCE for their
timely help and support.

References

1. Panagiotis Papadimitriou, and Hector Garcia-Molina, “Data
Leakage Detection”, IEEE transactions on knowledge and data
engineering, vol. 23, no. 1, January 2011.

2. L. Sweeney, “Achieving K-Anonymity Privacy Protection Using
Generalization and Suppression,” http://en.scientificcommons.
org/43196131, 2002.

3. R. Agrawal and J. Kiernan, “Watermarking Relational Databases,”
Proc. 28th Int’l Conf. Very Large Data Bases (VLDB ’02), VLDB
Endowment, pp. 155-166, 2002.

4. P. Buneman, S. Khanna, and W.C. Tan, “Why and Where: A
Characterization of Data Provenance,” Proc. Eighth Int’l Conf.
Database Theory (ICDT ’01), J.V. den Bussche and V. Vianu, eds.,
pp. 316-330, Jan. 2001.

5. P. Buneman and W.-C. Tan, “Provenance in Databases,” Proc.
ACM SIGMOD, pp. 1171-1173, 2007.

6. Y. Zhang, L. Wu, “Artificial Bee Colony for Two Dimensional
Protein Folding”, Advances in Electrical Engineering Systems,
vol.1, no.1, pp.19-23, 2012

7. Maziar Rezaei Rad, Mani Rezaei Rad, Shahabeddin Akbari, “A
Maximum Power Point Tracker for Photovoltaic Arrays Using
Genetic Algorithm Plus Fuzzy Cognitive Networks”, Advances in
Electrical Engineering Systems, vol.1, no.1, pp.35-40, 2012

8. Sajad Farhangi, Saeed Golmohammadi, “A Comparative Study of
IS-IS and IGRP Protocols for Real-Time Application Based on
OPNET”, Advances in Electrical Engineering Systems, vol.1, no.1,
pp.65-70, 2012


